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On a momentum-mass flux diagram for turbulent 
jets, plumes and wakes 

By B. R. MORTON 
Department of Mathematics, University of Manchester 

(Received 18 September 1960) 

Many salient features of fully developed turbulent jets, plumes and wakes with 
steady mean flow are shown clearly by the relationship between the momentum 
flux and the mass flux in the column of moving fluid. Using a simple model for 
the flows, this relationship can be found from the solution of a single ordinary 
differential equation and the character of many related flows can be represented 
immediately (except for actual distribution in space) on a single momentum- 
mass flux diagram. 

In this note some approximate solutions based on dimensional arguments are 
outlined briefly for cases of buoyant and non-buoyant wakes and jets directed 
along the axis of a uniform main stream, and momentum-mass flux curves are 
presented. 

1. Introduction 
There are sufficiently strong similarities in the behaviour of round turbulent 

jets and wakes in a still fluid environment or in a steady ambient stream to suggest 
that, for at least some purposes, this family of columnar turbulent flows can 
usefully be investigated as a single group. Further members of the same family 
are provided by buoyant wakes and plumes (i.e. buoyant jets) directed along the 
line of the (uniform) force field which produces the buoyancy. For each of these 
columnar turbulent flows a detailed treatment can be given using an approximate 
method described by Morton, Taylor & Turner (1956), but sufficient information 
for many purposes can be obtained from the same assumptions more simply by 
relating the momentum flow and the mass flow in the column and eliminating, 
in so far as this is possible, other variables. In  particular, this partial solution is 
useful either for a comparison of different columnar flows, or for finding whether 
flows exhibit specified types of behaviour rather than where they may do so. 

There are, of course, differences between the various flows of the family which 
must be borne in mind. Each flow will take a certain distance from the source to 
develop fully its appropriate turbulent character, and the flow in this initial 
region will be partly characteristic of the source and may not be fully turbulent 
(cf. Kuethe 1935, for the jet, and Goldstein 1938, chap. XIII, for the wake). 
The flow in this ‘entry’ or ‘development’ region is quite outside the scope of a 
treatment based on developed turbulent flow, but this is of no great importance 
if in each case the flow is conceived as originating from an appropriate virtual 
source, the position of which is determined by the fluxes of mass, momentum, 
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etc. at  the end of the development region. In  some cases source characteristics 
may persist for much greater distances downstream, as with the oscillations of a 
wake, which are specially marked over certain ranges of Reynolds number; 
these effects are more difficult to make allowance for, but this should to some 
extent be possible by suitable modification of the virtual source strength. An- 
other difference arises from the fact that with increasing distance from the virtual 
source the local Reynolds number remains constant for a simple jet, increases 
for a simple plume, and decreases for a simple wake; hence the level of turbulence 
will decay far from the source of a wake. 

The common features of jets, plumes and wakes make possible a single type of 
treatment which can be based on a common set of assumptions. All these flows 
show a relatively slow rate of spread with increasing distance from the source, 
and this suggests that mean profiles across the column of longitudinal velocity, 
etc., will be similar in shape at  all stations along the column (such profiles are 
known experimentally to be approximately Gaussian). This assumption is 
certainly reasonable in the cases of simple jets and simple wakes; it is at least 
plausible in cases where there is an outer flow and may be used until further 
information on these flows is available. It will also be reasonable to adopt the 
usual boundary layer assumption that longitudinal diffusion is negligible relative 
to lateral diffusion; and molecular diffusion will in all cases be neglected relative 
to turbulent diffusion. The flow will be taken as independent of Reynolds number, 
and also of the relative density difference parameter (characteristic density 
difference divided by reference density) except in so far as density variations 
give rise to buoyancy forces. The turbulent mixing or entrainment of ambient fluid 
can now be fully represented by a speed of flow into the column at some arbitrarily 
defined ‘ mean outer edge ’, and as a consequence of the assumptions already made 
this i d o w  speed across the ‘mean boundary’ of the column must be proportional 
to the magnitude of the difference between a characteristic mean velocity along 
the column and the (parallel) velocity of the ambient fluid at  a distance. This 
basic assumption follows immediately from dimensional considerations and must 
be valid wherever the physical character of the flow is adequately represented 
by the previous assumptions. It bears no immediate relationship to mixing length 
theories other than its dimensional background, and it is in fact a good deal 
weaker since no interrelationship is imposed on mixing processes at different 
parts of a section of the column. The result of assuming the inflow rate and the 
similarity of profiles is to suppress all detail of the transverse structure of the 
column from the solution; hence any profile shape can be used without loss of 
additional physical information, and although profiles are known to be almost 
Gaussian it will be simplest here to work in terms of top-hat profiles in which 
variables take a constant value (different t o  that in the ambient stream) across 
the whole width of the column. 

2. Formulation 
A convenient frame of reference for treatment of the axially symmetric flows 

that will be considered here has origin at  the virtual source (as yet undetermined) 
and x-axis directed along the axis of the column. Take T = ~ ( x )  as the mean 
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column radius, u = u(x)  as the mean velocity along the column (which for the 
top-hat profile is uniform over column sections), u, as the main stream velocity 
of the ambient fluid assumed to be parallel to the column axis, p = p(z) as the 
density of column fluid and po the ambient density. Although u, and po can be 
permitted to vary with z, they will be regarded as constant here for simplicity. 
Then, if the buoyancy force arises from the action of a uniform gravitational field 
actingin thenegativex-direction, equationsrepresenting the conservation of mass, 
momentum, and density deficiency (e.g. due to transported heat) can be written as 

d 
- (npr2u) = ZnprE I u - uo I , 
ax 

d 
- (npr2u2) = 3nprE~u-u,~uo+ngr2(p,-p), 
ax 

where E is the entrainment constant, which is defined as the ratio of the inflow 
speed a t  distance r to the speed difference between column and ambient flows, 
calculated in terms of the top-hat profile. It may be observed that these equa- 
tions have been derived on the assumption that all entrainment is due to turbu- 
lent mixing outwards from within the column into the laminar ambient flow. 
Fluid flowing in the main stream cannot of itself enter the column, but will merely 
carry the column boundary before it until engulfed by the column turbulence. 

Equations (1) can be written more concisely in terms of the variables 

v = r2u, m = r2u2, b = r2ug(p,-p)/po, 

which are porportional to the fluxes of mass, momentum and buoyancy, respec- 
tively. The further set of transformations to the non-dimensional variables 
V ,  M ,  X ,  given by 

v = V ,  V ,  vz = m,M, x = (v,/~Ew& X, 

is based on the measurable values v, for v and m, for m at the end of the develop- 
ment region, that is at the first point of the column which can be regarded as 
characteristic of the developed turbulent flow, say at the point x = z,. Under 
these two sets of transformations, equations ( 1 )  reduce to 

and b = b, = constant, where A = uovo/mo is the ratio of the free stream velocity 
to the mean velocity in the column at x = xo, and 

= ( b o v w m  = [rg(Po -P ) / (~EP0u2)1~=4  

A is necessarily positive or zero, but B can also be negative. In  deriving these 
equations it has been assumed that variations in density need be taken into 
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account only where they give rise to buoyancy forces. A solution to equations (2) 
subject to the conditions V = 1, M = 1 at the appropriate point (though it is not 
obvious where this is) could be found without difficulty for any particular case 
(A ,  B),  but it is very much simpler to carry out a survey of solution types if X 
is first eliminated to give the single equation 

subject to the condition M = 1 when V = 1. Solutions to equations (3) will 
demonstrate the character of appropriate columnar flows without giving their 
distribution in space, so that it is no longer necessary to known where the boun- 
dary condition is to be applied. Once a solution to (3) has been found, the oorre- 
sponding distribution in space is obtained by integrating the equation * 

dX M+ 
dV IM-AVI’ 
- =  (4) 

subject to the condition that X = 0 when V takes the value appropriate to the 
virtual source (and this value is given by the solution to equation 3). The whole 
solution is then determined in the parametric form X = X( V ) ,  M = M (  V). 

For a survey of the family of columnar flows it will be convenient to define two 
groups, using slightly more general definitions for jets and wakes than are usual. 
Columnar flows having A < 1 will be termed jets, and those with A > 1 will be 
wakes; this is a classification according to the relative motion of the column and 
its environment at the beginning of the developed flow, and in jets the column 
velocity is greater than the ambient velocity while in wakes it is smaller. 

In  general there will be different types of virtual source for the two groups. 
This can be seen most readily by considering curves on the momentum-mass 
flux diagram representing different columnar flows. For each flow there is an 
M-V curve which passes through the ‘initial point,’ ( 1 , l )  corresponding to the 
start of the developed flow. The volume flux V must necessarily increase mono- 
tonically with increasing distance along the column from the virtual source since 
there is no possibility of ‘detrainment’ (i.e. removal of ‘marked’ column fluid 
due to the motion of the ambient fluid, possible only when the ambient flow is 
turbulent), and indeed it is this monotone increasing character of V with X 
which makes V a suitable independent parameter for the solution. Thus M is a 
single-valued function of V, and it follows that each M-V curve must cut either 
the V-axis in the range 0 < V < 1 or the M-axis with 0 < M (a negative value of 
M would correspond to a reversed flow). These points of intersection with the 
axes represent the virtual sources; intercepts (0, M) on the M-axis correspond in 
general to virtual sources for jet flows, and intercepts ( V ,  0) on the V-axis are 
virtual sources of wakes, though there are exceptions caused by buoyancy 
effects. It is an advantage of this approach that the strength of the virtual source 
is given as a natural product of the solution. 

The two groups will now be considered in greater detail. 
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2.1. Jets 

This group will include all columnar flows for which u > u,, at x = x,,, the start 
of the developed turbulent flow, irrespective of whether or not the initial flow 
in the column is buoyant. The virtual source for a jet has strength (0, M ,  B) ,  
where B provides a measure of the constant buoyancy flux along the jet. It 
follows that the virtual source must be apoint source, since V cc r2u cc Mlu,  and 
hence as x --f 0, u + 00 and r + 0. 

0 1 2 3 4 5 
V 

FIGURE 1. A diagram showing in non-dimensional form the relationship between the 
momentum flux M and the volume flux V for axially symmetrical turbulent jets and wakes 
released along the flow of a uniform main stream. The point S( 1, 1) represents conditions 
at the equivalent source of the flow, the unbroken lines proceeding to the right of S repre- 
sent flow in the columns at increasing distance from the source and the broken lines to the 
left of S cut the axes in points (marked by circles) corresponding with the appropriate 
virtual sources and represent the hypothetical part of the column flow. The dotted line 
( M  = V )  provides a division into broad classes of ' jet-like' and ' wake-like ' flows, The lines 
shown represent: (1) the simple jet (A = 0 )  in a still environment; (2) a jet in a uniform 
stream (A = 0.4); (3) a forced wake (A = 1.1) produced by emitting fluid at a mean 
velocity below that of the main stream; (4) the simple wake ( A  = 1.25) of a bluff body. 
There are no buoyancy effects. 

2.1 (a) .  The simple jet without buoyancy in a uniform environment at rest has 
A = 0, B = 0 and equation (3) reduces to dM/dV = 0, with solution M = 1, 
which is merely an expression of the well-known constancy of momentum in the 
simple jet. The actual flow in a simple jet is represented on the M-V diagram 
by the half-line M = 1, V 2 1 ; the virtual source strength is given from the point 
of intersection of the line M = 1 with the M-axis as (0, l), and the segment of 
the line for 0 < V < 1 represents the hypothetical flow between the virtual source 
and the supposed starting point for the well-developed flow. This behaviour 
is represented on figure 1, where the actual flow is shown with a continuous line 
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and’the hypothetical part of the flow by a broken line. Equation ( 4 )  has 
solution X = V ;  hence the full solution for the simple jet is V = X, M = 1. 

2.1 ( b ) .  A jet in a uniform stream with the jet emitted in the direction of the 
main stream. In this case 0 < A < 1 and B = 0, and equation (3) has the form 
d M / d V = A w i t h M =  l a t V =  1. Henceill-1 =A(V-l),thatis,jetmomen- 
tum increases linearly with increasing volume flow because of the momentum 
of the fluid entrained. Actual flow in the jet is represented by the half-line of slope 
A through the point ( 1 , l )  and with V 2 1, and the strength of the (virtual) point 
source is (0, 1 - A )  obtained from the intersection of the line with the M-axis. 
Possible flows of this kind are given for 0 < A < 1, and a typical example is illu- 
strated in figure 1 (with a developed jet velocity two and a half times the main 
stream velocity i.e. A = Q). The solution to equation ( 4 )  with X = 0 at P = 0 is 

x = 3A-y 1 - A)-1([1 + A (  8- 1)]% - (1 --A)%}; 
-4% 

hence the actual (effective) source is at X, = $A-l( 1 - A)-l(l- (1 -A)#).  The 
full solution is 

where L = $( 1 -A)*/A and A = uovo/mo. It may be noted that the asymptotic 
behaviour of a jet in a uniform stream is given by 

L% +...I, (X + L)S ( + ( X  + L)$ 
u-uo LS 
--N 

UO r (x+L)f(l-(x.Gji+ L3 ...I, 
[cl-A)m,lk L* 

so that the asymptotic behaviour is that of the wake (see below). Figure 2 shows 
curves for the dimensionless velocity excess (u - uo)(uo in the jet relative to the 
ambient fluid and for the dimensionless jet radius u,r /[( l  - A )  mO]a plotted 
against dimensionless distance X I L  from the virtual source; in each case curves 
for the simple jet and for the asymptotic wake behaviour are superimposed in the 
best form for comparison. 

2.1 (c) .  A forced plume (OT buoyant jet) in a uniform still environment: the flux 
of buoyancy is constant and equal to the flux from the source; A = 0 and B may 
take any value, hence equation (3) reduces to 

dM BV 
dV ill+’ 

Mt = 1 +gB( v 2 -  1). 

- = -  

and the solution with M = 1 at V = 1 is 

This curve represents for V > 1 the flow that might be observed in a buoyant 
jet; for large values of V ,  M - (5B/4)3V%, and hence for sufficiently large 8 
these curves will always lie under the line M = V ,  indicating jet-like flow. It 
may be seen by following the curve back (V  < 1 )  that there is a normal jet-type 
point source of strength ( V ,  M ,  B )  = [0, (1 - 5B/4)?, B] provided that B < 415, 
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and this includes the case B < 0 of negative buoyancy forces; dM/dV = 0 at 
V = 0 and the flow in a sufficiently close neighbourhood of the virtual source 
approximates to that of a simple jet (i.e. is momentum controlled). If, on the 
other hand, B > 415 then the curve cuts the V-axis first, and there is a virtual 
source of strength [{l - 4/(5B)]&, 0, B]. This is a virtual source of quite a dif- 

t 

l l a  

0 2 4 6 8 
I I I I  I I  

0 2 4 6 8 

FIGURE 2. The non-dimensional velocity (u-uo)/uo and radius u,(l -A)-* m;*r of a jet 
released along the flow of a uniform stream of speed uo, plotted against the non-dimensional 
distance X / L  from the virtual source. The broken curves for larger values of X / L  represent 
the asymptotic behaviour of a simple wake, and the broken line for small ,Y/L shows the 
spread of a simple jet in a still environment. 

ferent kind, characteristic of wake rather than jet flow; it has infinite radius and 
zero efflux velocity (see below, under wakes), dM/dV is now infinite at M = 0 
and the plume is buoyancy controlled in a neighbourhood of the source. A 
treatment for the forced plume has already been described in detail (Morton 
1 9 5 9 ~ ) .  These solutions are illustrated in figure 3 by the curves: (i) B = - 0.462, 
in which case heavy fluid is discharged and will be continuously decelerated by 
buoyancy forces (in addition to entrainment effects) until a greatest height 
is reached ( M  = 0)-the solution cannot be continued beyond this point; (ii) 
B = 0.185, a normal example of a jet with positive buoyancy; (iii) B = 0-S, the 
case of a simple plume from a source of pure buoyancy, for here M = 7 4  and 
there is a point source (0, 0, B )  at X = 0;  (iv) B = 1.6, when the virtual source is 
of ‘wake ’ type and the curve representing the early part of the actual flow lies 
above the dividing line M = 7, but falls below it for larger values of V (i.e. 
reverts to ‘jet’ behaviour). 
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2.1 (d ) .  Simple plume in a stably strati$ed environment at rest: useful informa- 
tion can be carried on an M-V diagram even in more complicated cases where 
there are other dependent variables (e.g. buoyancy flux); to illustrate this a curve 
has been drawn in figure 3 for the simple plume projected upwards into stably 
stratified ambient fluid. The results (taken from Morton et al. 1956) are plotted 
for V > 1 only as they are hard to distinguish from those of the simple plume in 
0 < V < 1. There is again a maximum height to which plume fluid can be pro- 
jected. 

2.l(e). A buoyant jet projected along a uniform upward stream of uniform 
density: neither A nor B vanishes, and hence the full solution to equation (3) 

V 

FIGURE 3. An 31-8 diagram for buoyant jets in a uniform still ambient fluid ( A  = 0). 
The curves shown represent: 1 flow from a source of heavy fluid (B  = -0.462) with 
negative buoyancy; 2 flow from a weak source of positive buoyancy (B  = 0.186); 3 the 
simple plume from a virtual source of pure buoyancy (B  = 0.8);  4 flow from a strong 
source of buoyancy ( B  = 1.6), in which case the virtual source is of ‘wake’ type and the 
early stages of the actual flow are buoyancy dominated; 5 the simple plume in a stably 
stratified environment a t  rest, where again a maximum height is reached. Except in cases 
of negative buoyancy these flows are all ultimately jet-like. 

satisfying M = 1 a t  V = 1 is required. An analytic solution might be found for 
this equation, but it is likely to be complicated in form and to need a good deal 
of numerical evaluation. Thus it may well be easier to solve the equation numeri- 
cally-a simple task-and it is here that the use of an M-V diagram has some 
advantages since it permits a survey of the range of expected solutions with a 
minimum of labour. Particular cases which appear to have desired properties can 
subsequently be solved in detail. For example, the behaviour of jets with weak 
negative buoyancy might be investigated in this way to find the interaction 
between the retarding effect of the buoyancy and the accelerating effect of 
the entrained momentum on the jet. For present purposes it seems enough to 
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give curves for the integrations: (i) ( A ,  B )  = (0.5, - l-o), (0.5, - 0.0625) and 
(0.5, - 0.0025) with negative buoyancy, and (ii) ( A ,  B) = (0.5, 0-2) for positive 
buoyancy; these are shown on figure 4. 

2.2. Wakes 

This group includes all columnar flows with u < u,, at x = xo, the point which 
may be taken as the start of developed turbulent flow, and again includes buoyant 
columns that lie along the line of the buoyancy producing force field. The virtual 

4 

3 

M 2  

V 

FIGURE 4. An M -  V diagram for buoyant jets and wakes in a uniform stream. The curves 
shown represent: 1 anegatively buoyant jet ( A  = 0.5, B = - 1.0) ofheavyfluidwithstrong 
deceleration which rapidly reaches its greatest height ( M  = 0); 2 a weaker negatively 
buoyant jet ( A  = 0.5, 3 = -0.0625) which still suffers fairly rapid deceIeration; 3 a 
buoyant jet with very weak negative buoyancy ( A  = 0-5, 3 = -0.0026) which is little 
af€ected; 4 a positively buoyant jet ( A  = 0.6, B = 0.2) where the discharge of buoyancy 
at the source S is sufficient to call for a ‘ wake-type ’ virtual source ; 5 a forced wake ( A  = 1.2, 
B = 2 )  with sufficiently strong positive buoyancy to cause transition from wake flow 
to jet flow close to the source S (shown by the infinite gradient there); 6 a more weakly 
buoyant forced wake ( A  = 2, B = 1) showing transition to jet flow at  a rather greater 
‘distance ’. 

source for a wake has strength ( V ,  0, B) in general, and since in this case 
M cCr2u2cc Vu,  it follows that when x -+ 0, u --f 0 and r -+ m, in such a way that there 
is a non-zero volume flux carrying zero momentum from the virtual source. This 
is, perhaps, a less commonly discussed type of virtual source, but as the flow 
predicted by the solution for V < 1 is purely hypothetical this is of no significance 
physically. 

2.2 (a)  Forced wakes are column flows produced from a source emitting fluid 
at  mean velocity u which is smaller than the free stream velocity uo, so that 
A > 1; if there are no buoyancy effects B = 0, and equation (3) reduces to 
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dM/d V = A ,  subject to M = 1 at B = 1. These form a continuation of the solu- 
tions for jets in a uniform stream (case 2.1 b) ,  with the same solution 

H - 1 =  A ( V - 1 ) .  

Observable flow in the forced wake is again represented by the half-line of slope A 
through ( 1 , l )  with V > 1, and the strength of the virtual source (of infinite area) 
is { ( A  - l ) /A,  O} .  Forced wake flows are possible for values of A > 1 lying in a 
range which is certainly bounded above, though it is not immediately clear what 
this upper bound will be; a typical example, calculated for A = 1.1, is shown in 
figure 1. Equation (4) has solution satisfying X = 0 at V = ( A  - l) /A, 

x = $A-I(A - 1)-1[1 + A (  Tr- 1)]4 

so that the effective source is at X = - 1)-l. The full solution is 

[ ( A  - I) mo]a X3 + LQ 
X Q + L j  , u.0 LfX4 ’ r =  

X %  
u = uo- 

where in this case L = %(A - l)*/A; the asymptotic behaviour is 

2.2  (b) .  The simple wake is the limiting case of a forced wake and is produced 
when a bluff body modifies the flow of a steady uniform stream (or when a bluff 
body is moved a t  constant speed through a still environment, but here take a 
reference frame moving with the body). The modification to the uniform flow 
uo outside the wake will be disregarded. The simple wake is a special case of the 
forced wake for limiting A ,  and to find the value of A it  is necessary to know 
the mean velocity in the wake at x = xo. Between x = xo and the rear surface of 
the body there is an attached circulating flow, the nature of which depends 
strongly on the Reynolds number for flow past the body and on body shape 
(including the existence of a defined edge for separation), roughness, etc.; and 
except at small Reynolds numbers this circulating flow is bordered by a turbulent 
mixing layer which gradually thickens until it spreads completely across the 
wake a t  a point that is probably somewhat short of x = xo (there is some loss of 
fluid from the mixing layer to the circulating flow near this closing point). 
From this very rough description it may be expected that the appropriate value 
for A is likely to vary with Reynolds number (even at such relatively high values 
as 105) and with other factors; moreover, the task of finding A is made more 
difficult by the rather limited amount of experimental data which appears to be 
available for the attached flow. There is a. temptation to take the virtual source 
actually at the rear of the body, but there is no possible justification for this even 
though u vanishes there. However, there are two ways in which A can be esti- 
mated. The first is to use direct measurements of wake velocity, for example 
using results for a circular flat plate normal to the stream and at Reynolds number 
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1.6 x los given by Fail, Lawford & Eyre (1957) of u/uo = 0-85 approximately, 
at a distance 1.6 'attached bubble lengths' behind the plate (converting into 
terms of the top-hat profile); the corresponding value is A = 1.2. The second 
method for estimating A is based on the drag of the body which is &',na2pu: 
in terms of the drag coefficient C, and the area ra2 presented by the body to the 
oncoming stream, and is also pnr%(u, - u)  in terms of the wake disturbance to 
the flow. Hence, to the present accuracy, 

r2(A - 1) 
c,=2- a2A7 ' 

and A is given in terms of C,, which is widely known, and the relative area of 
section of the wake downstream of the attachedflow in terms of the area presented 
by the body, and this is as hard to find as the related information on wake velo- 
cities. The results of Fail and others are not easy to interpret for this purpose, 
but an estimate of the wake diameter at  1.6 attached bubble diameters indicates a 
value A = 1.3 for the circular disk (with C, = 1-12); this agreement is probably 
much better than should be expected. Results for the sphere are more sensitive 
to Reynolds number, and the only really safe statement is that A is a good deal 
closer to unity, especially after transition to turbulence in the boundary layer. 
These results are of very limited use, but at least they show what information is 
needed if any particular problem is to be handled. A line is drawn in figure 1 
for the simple wake with A = 1-25, and this is probably close to the upper limiting 
line for axially symmetric simple wakes. 

2.2 (c ) .  A buoyant forced wake in a vertical stream of uniform density: the full 
equation (3) can again be solved numerically in a survey of solutions. Solution 
curves are shown in figure 4 for A = 1.2, B = 2 and for A = 2, B = 1; the fluid 
in the wake is accelerated by entrainment of momentum and by buoyancy until 
it is moving with the ambient fluid (at which point d M / d  V is infinite), and there- 
after the behaviour changes over to that of a buoyant jet. 

3. Application of the solution 
How seriously should these solutions be taken? They add nothing to physical 

understanding of the flows described, and the formulation based on dimensional 
arguments has been reduced to such a state of simplicity that only the barest 
bones of the problem can have survived. Whenever more sophisticated methods 
of solution are available these will undoubtedly be superior; but the unfortunate 
fact is that more sophisticated methods of attack are often not available, 
especially for the more complicated problems which involve diffusion and con- 
vection of buoyant material along the column. In  such cases the methods 
described will produce a solution which is correct at  least in order of magnitude 
and usually much more closely, and the simplicity of the formulation ensures 
that the physical significance of the assumptions is exposed fully and is not likely 
to be overlooked in making an application. 

Finally, a value or values must be chosen for the entrainment constant E .  
This question has already been discussed at some length by various authors 
(see Ellison & Turner (1959) and Morton (19598)). Various values for E have 
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been suggested for the case of jets and plumes in which the relative density 
variations are small ; the differences are due partly to small variations in defini- 
tion of the entrainment constant, and partly to the somewhat unequal quality 
of the available experimental results and to the difficulty in extracting accurately 
the required information from that which has been published. The results from 
jets suggest a value of about E = 0.116 in the form used above; the less reliable 
results from plumes suggest a higher value although the difference is small if the 
unequal spread of momentum and heat is taken into account Values of E in 
cases of a moving environment are not at all easy to estimate, as there is a con- 
siderable scarcity of suitable results especially sufficiently far downstream to be 
of use, but it is hard to see why they should differ greatly from values for a simple 
jet. Moreover, E enters the various expressions mainly as a power with fractional 
exponent smaller than unity so that there is a tendency for errors in E to be 
reduced in importance. Thus while a good deal of further information on values 
of the entrainment constant is needed, the solutions given above are still of 
potential use in practical applications with E regarded as a known (or deter- 
minable) function of the column type. 
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